图形点阵液晶显示模块

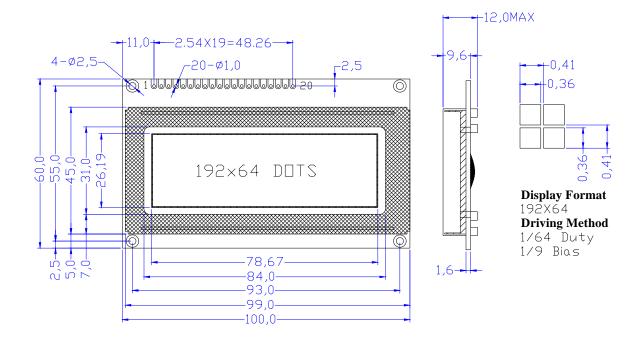
19264B

使用说明书

本说明书的内容如有修正, 恕不另行通知。未**经科飞研科技的允许, 不得以任何理由** 将本说明书的内容以电子或机械的方式, 将档案转换成其它模式并予以重制, 传输。

深圳市科飞研科技有限公司

目 录


— ,	概述	1
_,	外形尺寸	1
三、	引脚说明	2
四、	LCM内部结构	3
五、	指令说明	4
六、	读写操作时序	7
七、	硬件连接图	8
八、	示范程序	9
九、	注意事项	. 14
十、	质量保证	. 14

一、概述

19264B 是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及 192×64 全点阵液晶显示器组成。可完成图形显示,也可以显示 12×4 个(16×16 点阵)汉字。主要技术参数和性能:

- 1、 电源: VDD: +5V;
- 2、 显示内容: 192(列)×64(行)点
- 3、 全屏幕点阵
- 4、 七种指令
- 5、 与 CPU 接口采用 8 位数据总线并行输入输出和 8 条控制线
- 6、 占空比 1/64
- 7、 工作温度: -20° C ∽+70° C, 存储温度: -30° C ∽+80° C

二、外形尺寸

1

三、引脚说明

管脚号	管脚名称	电平	管脚功能描述
1	DB7	H/L	数据线
2	DB6	H/L	数据线
3	DB5	H/L	数据线
4	DB4	H/L	数据线
5	DB3	H/L	数据线
6	DB2	H/L	数据线
7	DB1	H/L	数据线
8	DB0	H/L	数据线
9	Е	H/L	R/W= "L", E 信号下降沿锁存 DB7∽DB0
			R/W= "H",E= "H" DDRAM 数据读到 DB7∽DB0
10	R/W	H/L	R/W= "H",E= "H" 数据被读到 DB7∽DB0
			R/W= "L", E= "H→L" 数据被写到 IR 或 DR
11	D/I (RS)	H/L	D/I= "H", 表示 DB7∽DB0 为显示数据
			D/I= "L",表示 DB7∽DB0 为显示指令数据
12	VO		LCD 驱动负电压输入(调节液晶亮暗)
13	VDD		电源电压(+5V/+3.3V)
14	VSS		电源地(GND)
15	CSA	H/L	选择 ICA
16	CSB	H/L	选择 ICB
17	VEE		LCD 驱动负电压输出(输出电压到 V0)
18	/RST	L	复位控制信号,/RST=0 有效
19	LED+		LED 背光电源正极(+5V/+3.3V)
20	LED-		LED 背光电源负极(GND)

四、LCM内部结构

1. 指令寄存器(IR)

IR 是用来寄存指令码,与数据寄存器寄存数据相对应. 当 RS=1 时,在 E 信号下降沿的作用下,指令码写入 IR.

2. 数据寄存器(DR)

DR 是用来寄存数据的,与指令寄存器寄存指令相对应. 当 RS=1 时,在 E 信号的下降沿作用下,图形显示数据写入 DR,或在 E 信号高电平作用下由 DR 读到 DB7^{DB0} 数据总线. DR 和DDRAM 之间的数据传输是模块内部自动执行的.

3. 忙标志:BF

BF 标志提供内部工作情况. BF=1 表示模块在进行内部操作,此时模块不接受外部指令和数据. BF=0 时,模块为准备状态,随时可接受外部指令和数据.

利用 STATUS READ 指令,可以将 BF 读到 DB7 总线,从而检验模块之工作状态.

4. 显示控制触发器 DFF

此触发器是用于模块屏幕显示开和关的控制。DFF=1 为开显示(DISPLAY ON), DDRAM 的内容就显示在屏幕上, DDF=0 为关显示(DISPLAY OFF)。

DDF 的状态是指令 DISPLAY ON/OFF 和 RST 信号控制的。

5. XY 地址计数器

XY 地址计数器是一个 9 位计数器。高三位是 X 地址计数器,低 6 位为 Y 地址计数器,XY 地址计数器实际上是作为 DDRAM 的地址指针,X 地址计数器为 DDRAM 的 Y 地址指针。

X 地址计数器是没有记数功能的,只能用指令设置。

Y 地址计数器具有循环记数功能,各显示数据写入后,Y 地址自动加 1,Y 地址指针从 0 到 63。

6. 显示数据 RAM (DDRAM)

DDRAM 是存贮图形显示数据的。数据为 1 表示显示选择,数据为 0 表示显示非选择。DDRAM 与地址和显示位置的关系见 DDRAM 地址表(见第 7 页)。

7. Z 地址计数器

Z 地址计数器是一个 6 位计数器,此计数器具备循环记数功能,它是用于显示行扫描同步。 当一行扫描完成,此地址计数器自动加 1,指向下一行扫描数据,RST 复位后 Z 地址计 数器为0。

Z 地址计数器可以用指令 DISPLAY START LINE 预置。因此,显示屏幕的起始行就由此指令控制,即 DDRAM 的数据从哪一行开始显示在屏幕的第一行。此模块的 DDRAM 共 64 行,屏幕可以循环滚动显示 64 行。

五、指令说明

指令表:

指	指令	码									功能
令	RW	DI	D7	D6	D5	D4	D3	D2	D1	D0	
显示	0	0	0	0	1	1	1	1	1	1/0	控制显示器的开关,不
ON/OFF											影响 DDRAM 中数据和内
											部状态
显示	0	0	1	1		起始行	:				指定显示屏从 DDRAM 中
起始行					(0 [~]	63)		_			哪一行开始显示数据
设置	0	0	1	0	1	1	1	X: 0	···-7		设置 DDRAM 中的页地址
X 地址											(X 地址)
设置	0	0	0	1	Y 地	址(0~6	3)				设置地址(Y地址)
Y地址											
读状态	1	0	BUS	0	ON/	RST	0	0	0	0	RST 1:复位 0: 正常
			Y		0FF						ON/OFF 1:显示开 0:显
											示关
											BUSY 0: READY
											1: IN OPERATION
写显示	0	1	显示	数据	•		•		•		将数据线上的数据
数据											DB7~DB0 写入 DDRAM
读显示	1	1	显示	数据							将数据线上的数据
数据											DB7~DB0 写入 DDRAM

1. 显示开关控制(DISPLAY ON/OFF)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	0	0	0	1	1	1	1	1	D

D=1:开显示(DISPLAY ON) 意即显示器可以进行各种显示操作 D=0:关显示(DISPLAY OFF) 意即不能对显示器进行各种显示操作

2. 设置显示起始行(DISPLAY START LINE)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	0	1	1	A5	A4	А3	A2	A1	A0

前面在 Z 地址计数器一节已经描述了显示起始行是由 Z 地址计数器控制的。A5~A0

6 位地址自动送入 Z 地址计数器,起始行的地址可以是 $0^{\sim}63$ 的任意一行。例如:

选择 A5~A0 是 62, 则起始行与 DDRAM 行的对应关系如下:

DDRAM 行: 62 63 0 1 2 3 ··········· 28 29

屏幕显示行: 1 2 3 4 5 6 ************ 31 32

2. 设置页地址 (SET PAGE "X ADDRESS")

代	R/W		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
码		D/I								
形	0	0	1	0	1	1	1	A2	A1	A0
式										

所谓页地址就是 DDRAM 的行地址,8 行为一页, 模块共 64 行即 8 页, $A2^{\sim}A0$ 表示 $0^{\sim}7$ 页。读写数据对地址没有影响, 页地址由本指令或 RST 信号改变复位后页地址为 0。页地址与 DDRAM 的对应关系见 DDRAM 地址表。

3. 设置Y地址(SET Y ADDRESS)

代	R/W		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
码		D/I								
形	0	0	0	1	A5	A4	А3	A2	A1	A0
式										

此指令的作用是将 $A5^{\sim}A0$ 送入 Y 地址计数器,作为 DDRAM 的 Y 地址指针。在对 DDRAM 进行读写操作后,Y 地址指针自动加 1, 指向下一个 DDRAM 单元。

DDRAM 地址表:

	С	S 1 = 0), CS2=0 (左1/	(3 屏)			CS 1	=1, CS2=0 (中1	/3 屏)		
Y=	0	1	•••••	62	63	0	1	•••••	62	63	行号
X=	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	0
	↓	↓	\downarrow	↓	\downarrow	\downarrow	↓	↓	\downarrow	\downarrow	↓
0	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	7
	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	8
↓	↓	\downarrow	\downarrow	↓	\downarrow	\downarrow	\downarrow	↓	\downarrow	↓	\downarrow
	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	55
X=7	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	56
	↓	\downarrow	\downarrow	↓	\downarrow	\downarrow	\downarrow	\downarrow	↓	↓	\downarrow
	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	63

4. 读状态(STATUS READ)

代	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
码										
形	0	1	BUS	0	ON/	RET	0	0	0	0
式			Y		0FF					

当 R/W=1 D/I=0 时,在 E 信号为"H"的作用下,状态分别输出到数据总线(DB7 $^{\sim}$ DB0)的相应位。

BF: 前面已叙述过(见 BF 标志位一节)。

ON/OFF:表示 DFF 触发器的状态(见 DFF 触发器一节)。

RST: RST=1表示内部正在初始化,此时组件不接受任何指令和数据。

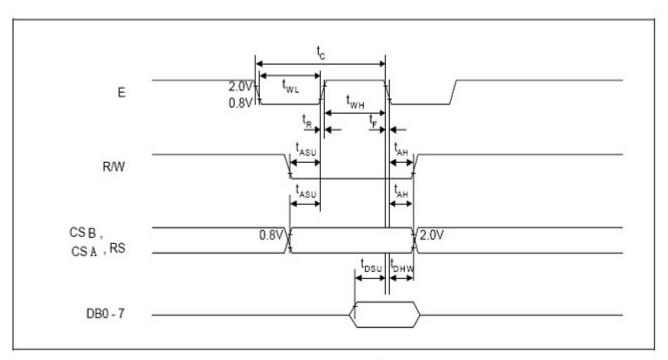
5. 写显示数据(WRITE DISPLAY DATE)

代	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
码										
形	0	1	D7	D6	D5	D4	D3	D2	D1	DO
式										

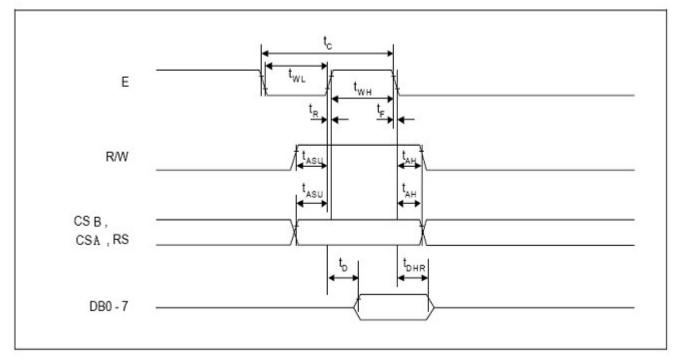
D7~D0 为显示数据,此指令把 D7~D0 写入相应的 DDRAM 单元,Y 地址指针自动加 1。

6. 读显示数据(READ DISPLAY DATE)

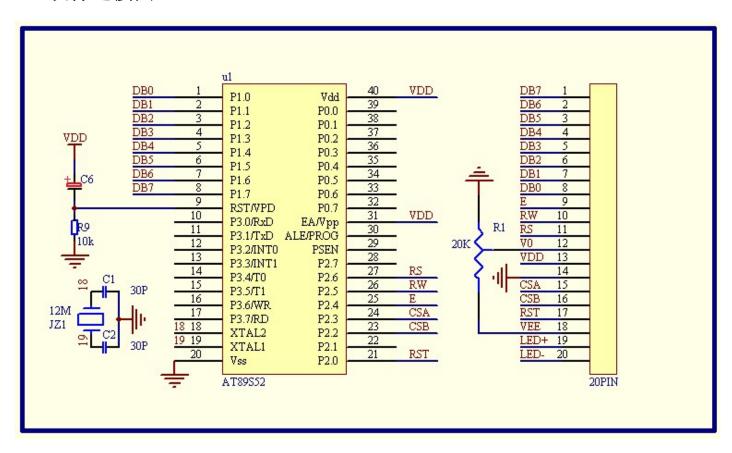
代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	1	1	D7	D6	D5	D4	D3	D2	D1	DO


此指令把 DDRAM 的内容 D7~D0 读到数据总线 DB7~DB0, Y 地址指针自动加 1。

六、读写操作时序


1. 读写时序参数表

Characteristic	Symbol	Min	Тур	Max	Unit
E cycle	t _C	1000	-	-	ns
E high level width	t _{WH}	450	-	-	ns
E low level width	t _{WL}	450	-	-	ns
E rise time	t _R	-	-	25	ns
E fall time	t _F	-	-	25	ns
Address set-up time	t _{ASU}	140	-	-	ns
Address hold time	t _{AH}	10	-	1-1	ns
Data set-up time	t _{DSU}	200	_	-	ns
Data delay time	t _D		-	320	ns
Data hold time (write)	t _{DHW}	10	_	-	ns
Data hold time (read)	t _{DHR}	20	-	:-:	ns


2. 写操作时序

3. 读操作时序

七、硬件连接图

八、示范程序

```
#include<reg51.h>
#include<intrins.h>
sbit RS=P2<sup>6</sup>;
sbit RW=P2<sup>5</sup>:
sbit E=P2<sup>4</sup>;
sbit CS1=P2<sup>3</sup>;
sbit CS2=P2<sup>2</sup>;
sbit REST=P2^0;
#define Lcm Data P1
#define uint unsigned int
#define uchar unsigned char
#define START LINE
                       0xC0
#define X ADDRESS 0xB8
#define Y ADDRESS 0x40
#define DISPLAY ON
                       0x3F
#define DISPLAY OFF 0x3E
void Lcm19264 Wr Data L(uchar wrdata) //左半屏写数据
{
  CS1=0;
  CS2=0;
  RS=1;
  RW=0:
  Lcm Data=wrdata;
  E=1;
```

```
Lcm_Delay();//必须加延时,30M以上晶振须再加长延时
 E=0;
 CS1=1;
 CS2=1:
}
void Lcm19264 Wr Data R(uchar wrdata) //右半屏写数据
 CS1=0;
 CS2=1;
 RS=1;
 RW=0;
 Lcm_Data=wrdata;
 E=1;
 Lcm Delay();//必须加延时,30M以上晶振须再加长延时
 E=0:
 CS1=1;
 CS2=1;
}
void Lcm19264_Wr_Data_M(uchar wrdata) //中半屏写数据
{
 CS1=1;
 CS2=0;
 RS=1;
 RW=0:
 Lcm_Data=wrdata;
```

```
E=1;
 Lcm_Delay();//必须加延时,30M以上晶振须再加长延时
 E=0;
 CS1=1;
 CS2=1;
}
void Lcm19264 Wr Command L(uchar wrcommand) //左半屏写指令
 Lcm_Delay();
 CS1=0;
 CS2=0;
 RS=0;
 RW=0:
 Lcm Data=wrcommand;
 E=1:
 Lcm_Delay();//必须加延时,30M以上晶振须再加长延时
 E=0;
 CS1=1;
 CS2=1;
}
void Lcm19264_Wr_Command_R(uchar wrcommand) //右半屏写指令
{
 Lcm_Delay();
 CS1=0;
 CS2=1;
 RS=0;
```

```
RW=0;
 Lcm Data=wrcommand;
 E=1;
 Lcm_Delay();//必须加延时,30M以上晶振须再加长延时
 E=0:
 CS1=1;
 CS2=1;
}
void Lcm19264_Wr_Command_M(uchar wrcommand) //中半屏写指令
 Lcm_Delay();
 CS1=1;
 CS2=0;
 RS=0:
 RW=0;
 Lcm Data=wrcommand;
 E=1;
 Lcm Delay();//必须加延时,30M以上晶振须再加长延时
 E=0;
 CS1=1;
 CS2=1;
}
void Lcm19264_Init(void) //液晶初始化
{
 REST=0;
 Lcm_Delay();
 REST=1:
```

```
Lcm19264 Wr Command L(DISPLAY OFF);
Lcm19264 Wr Command M(DISPLAY OFF);
                                    //关显示
Lcm19264 Wr Command R(DISPLAY OFF);
Lcm19264 Wr Command L(START LINE);
Lcm19264 Wr Command M(START LINE);
Lcm19264_Wr_Command_R(START_LINE);
                                   //显示起始行
Lcm19264 Wr Command L(X ADDRESS);
Lcm19264 Wr Command M(X ADDRESS);
Lcm19264 Wr Command R(X ADDRESS);
                                  //设置页地址
Lcm19264 Wr Command L(Y ADDRESS);
Lcm19264 Wr Command M(Y ADDRESS);
Lcm19264 Wr Command R(Y ADDRESS);
                                  //设置列地址
Lcm19264 Wr Command L(DISPLAY ON);
Lcm19264_Wr_Command_M(DISPLAY_ON);
Lcm19264 Wr Command R(DISPLAY ON);
                                   //开显示
Clean Display (0, 0, 192, 64, 0)://清屏
```

}

九、注意事项

1. 处理

- (1) 要避免在处理机械振动和对模块施加外力,都可能使屏不显示或损坏。
- (2) 不能用手或坚硬工具或物体接触、按压、磨擦显示屏,否则屏上的偏光片被物体划坏。
- (3)如果屏破裂液晶材料外漏,液晶可以通过空气被吸入,而且要避免液晶与皮肤接触,如果接触应立即用酒精冲洗,然后再用水彻底冲洗。
- (4) 不能使用可溶有机体来清洗显示屏。因为这些可溶的溶剂对偏光片不利,清洗显示屏时,可用棉花蘸少量石油苯轻轻擦拭或用透明胶带粘起脏物。
 - (5) 要防止高压静电产生的放电,将损坏模块中的 CMOS 电路。
- (6)不能把模块放在温度高的地方,尤其不能长时间放在湿度大的地方,最好把模块放在温度为 0 ℃-35 ℃,湿度低于 70%的环境中。
 - (7) 模块不能贮存在太阳直射的地方。

2. 操作

- (1) 当电源接通时,不能组装或拆卸模块。
- (2) 在电源电压的偏差、输入电压的偏差及环境温度等最坏条件下,也不能超过最大的额定值,否则将损坏 LCD 模块。

十、质量保证

如在此手册列明的正常条件下使用、储存该产品,公司将提供7天包换、12个月保修的质量保证。