HCTD01 Digital Temperature Transmitter

Features

- \cdot High precision $\pm 0.1^\circ C$ @ -5°C—+5 0°C
- · 12C interface / anti-interference / simplified circuit design
- $\cdot\,$ Small size, stainless steel thread seal structure, strong environmental adaptability
- · Operating temperature range: 4 0°C-+ 1 2 5°C
- $\cdot\,$ Thread shape can be customized, flexible and convenient

Applications

- · Industrial precision control field
- Heating / Cooling System
- · Home Appliances / Security
- HVAC
 Transportation

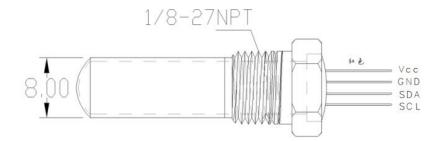
· Replace traditional thermistors P T C and N T C

Product description

The HCTD01 is a new universal universal digital temperature sensor. It incorporates a temperature sensing chip and a high precision 24-bit $\Delta\Sigma$ -A D C, which gives it highly accurate temperature information and high-resolution measurement performance. At the same time, the I 2 C interface is provided, which improves the anti-interference ability and simplifies the design of subsequent circuits.

Product features

parameter	symbol	surroundings	Minimum	typical	maximum	unit
Temperature	T _{rang}		-40		125	°C
measurement range						
Precision 1	TACC1	-5°C < T < +50°C	-0.1		+0.1	°C
		Vdd = 3.2V - 3.4V				
Precision 2	T _{ACC2}	-40°C < T < +125°C	-0.5		+0.5	°C
		Vdd = 3.2V - 3.4V				
Temperature resolution	T _{res}				0.01	°C
		t10-90 T1=25°C				
Time constant	Т	T2=75°C		9		
TIME COnstant		PCB 900mm2 x		9		S
		1.5mm FR4				
Self-heating	SH1	10 samples/s, 60s, still			0.02	°C
		air				


Digital input (SCLK, SDI, CSB, PS)

parameter	symbol	surroundings	Minimum	typical	maximu	unit
					m	
High voltage input	V _{IH}	V _{DD} =2.23.6V	$0.7V_{\text{DD}}$		V _{DD}	V
Low voltage input	V	V _{DD} =2.23.6V	0.0V _{DD}		0.3V _{DD}	V
CS low to the first SCLK rise	t_{CSL}		21			ns
CS high level to the first SCLK rise	t _{csh}		21			ns
SDI is set to the first SCLK rise	T _{DSO}		6			ns
SDI keeps rising to the first SCLK	T_{DO}		6			ns

Digital output (SDA, ADO)

parameter	symbol	surroundings	Minimum	typical	maximu	unit
					m	
High voltage output	V _{OH}	lsource=1mA	$0.8V_{\text{DD}}$		V _{DD}	V
Low voltage output	V _{ol}	lsink=1mA	$0.0V_{\text{DD}}$		0.22V _{DD}	V
SDO is set to the first SCLK rise	t _{QS}		10			ns
SDO keeps rising to the first SCLK	t _{QH}		0			ns

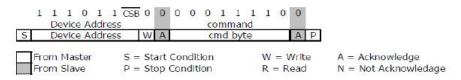
Pin definition

I2C communication protocol

I2C interface

The I2C communication mode starts with a start condition and ends with a stop condition. Each command consists of two bytes: an address byte and a command byte.

command:


- 1. Reset
- 2. Read the PROM (calibration parameters)
- 3. Start ADC temperature conversion
- 4. Read ADC temperature results

command	Hexadecimal value
Restart	0x1E
Start ADC temperature conversion	0x48
Read ADC temperature results	0x00
PROM read address 0	0xA0
PROM read address 1	0xA2
PROM read address 2	0xA4
PROM read address 3	0xA6
PROM read address 4	0xA8
PROM read address 5	0xAA
PROM read address 6	0xAC
PROM read address 7	0xAE

Reset mode

A reset command must be sent after power-on. It can also be used to reset the device ROM.

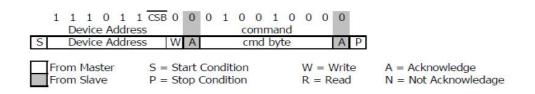
I²C

PROM reading order

The PROM Read command consists of two parts. The first command sets the system to PROM read mode.

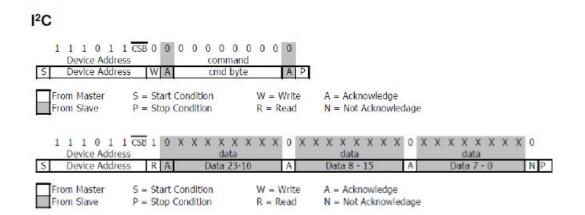
The second part gets the data from the system.

The following example is a sequence of reading address 3 (command 0xA6).

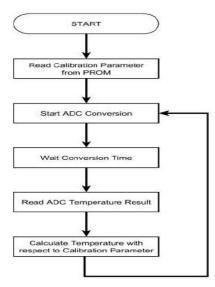

S	Г	_	 e A	 		N	A			om md					A	P							
		om om					rt Co p Co						W R =								now Ack	0.000	<u> </u>
	1		0 e Ac	1 0	SB 1	1	0 1	. 1	. 0	0 da	X ata	Х	×	Х	0	Х	Х	Х		X	Х	Х	Х
S	<u> </u>	-	e Ac	_	1	۲I	Ą	M	lem	_	-	15	- 8		A		M	em	_	-	7 -	0	

Conversion order

The conversion must be initiated by sending this command. The sensor remains busy until the conversion is complete. After the conversion is complete, you can access the data using the ADC read command.


I2C

When the command is sent, the sensor remains busy until the conversion is complete. All other commands except this will not be executed during this time. After the conversion is complete, when the sensor is confirmed, the data can be accessed by sending an ADC read command.



Read ADC results

After the conversion command, the ADC result is read using the ADC read command. Repeated reads of the ADC command or execution of the command without prior conversion will return all zeros as a result.

Temperature calculation

Temperature calculation

variable	description	command	Size/bit	Min	Max	example	
K4	Polynomial coefficient k4	0xA2	16	0	65535	28446	
K3	Polynomial coefficient k3	0xA4	16	0	65535	24926	
K2	Polynomial coefficient k2	0xA6	16	0	65535	36016	
K1	Polynomial coefficient k1	0xA8	16	0	65535	32791	
KO	Polynomial coefficient k0	0xAA	16	0	65535	40781	

Temperature polynomial

ADC24: ADC value ADC16: ADC24 / 256 T / °C = (-2) * k4 * $10^{-21} * ADC16^4 + 4 * k3 * 10^{-16} * ADC16^3 + (-2) * k2 * <math>10^{-11} * ADC16^2 + 1 * k1 * 10^{-6} * ADC16 + (-1.5) * k0 * 10^{-2}$

例:

ADC24: 9378708 *ADC16*: 9378708 / 256 = <u>36636</u>

```
T / °C = (-2) * 28446 * 10^{-21} * 36636^4 +

4 * 24926 * 10^{-16} * 36636^3 +

(-2 * 36016 * 10^{-11} * 36636^2 +

1 * 32791 * 10^{-6} * 36636 +

(-1.5) * 40781 * 10^{-2}
```

T/ °C = <u>10.59</u>

深圳市慧传科技有限公司 Shenzhen Huichuan Technology Co., Ltd. 地址: 深圳市宝安 72 区宝石路 4-2 四楼 Address: 4th Floor, 4-2, Gem Road, 72 District, Baoan, Shenzhen mailbox: ben@hycoresensor.com Shenzhen: +86 13751045330 Shanghai: +86 18616835451

Smartsensor